General Technical Information Slewing Bearings

SUPPORT STRUCTURES

Design of the Support Structure
The slewing ring has a limited axial stiffness: the diameter is large compared to the cross section.

It must be mounted on a machined supporting base, ensuring sufficient stiffness with regard to the loads to be transferred.
This makes it possible to ensure an even distribution of stresses and to avoid any deformation during operation, which would be harmful to the good working of the bearing.

Therefore, it is necessary to use supporting bases with a minimum thickness not less than the values indicated in the table above.
The width of the supporting surfaces is to be at the least equal to that of the ring

<table>
<thead>
<tr>
<th>Raceway average (mm)</th>
<th>500</th>
<th>750</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum thickness (mm)</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>150</td>
</tr>
</tbody>
</table>

We strongly advise **not** to use structural reinforcement ribs on the support structures.

For better loading distribution, thick circular flanges are preferred.

The best distribution of forces can be achieved when roller is in line with tubular support structure
SUPPORT STRUCTURE TOLERANCES

Shape defects of the supports lead to deformation of the raceway. This can cause tight spots or possible deformation and will reduce the bearing service life. The maximum flatness defects must not exceed the values of the following table.

<table>
<thead>
<tr>
<th>Raceway average (mm)</th>
<th>500</th>
<th>750</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max tolerance Cross roller (mm)</td>
<td>0,10</td>
<td>0,12</td>
<td>0,15</td>
<td>0,18</td>
<td>0,20</td>
<td>0,25</td>
<td>0,29</td>
<td>0,30</td>
<td>0,43</td>
<td>0,46</td>
<td>0,50</td>
</tr>
<tr>
<td>Max tolerance Ball roller (mm)</td>
<td>0,12</td>
<td>0,18</td>
<td>0,21</td>
<td>0,25</td>
<td>0,28</td>
<td>0,33</td>
<td>0,38</td>
<td>0,42</td>
<td>0,45</td>
<td>0,50</td>
<td>0,55</td>
</tr>
</tbody>
</table>

These maximum values are allowable for "long waves" in the circumferential direction.

"Short waves" for example between two fastening holes, must not exceed 1/4 of the values!

Waves in the radial direction (conical) must be less than 0,05 mm/m of raceway mean diam.!
STIFFNESS TOLERANCES
The stiffness of the supporting structures must be such that deflections do not exceed the values of the following table under maximal load.

<table>
<thead>
<tr>
<th>Raceway average (mm)</th>
<th>500</th>
<th>750</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Deflection (mm)</td>
<td>0,25</td>
<td>0,30</td>
<td>0,35</td>
<td>0,40</td>
<td>0,55</td>
<td>0,65</td>
<td>0,81</td>
<td>1,00</td>
<td>1,25</td>
<td>1,80</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Epoxy Resins
If the above tolerances could not be met, then Epoxy-type resins can be used instead of finishing-machining of the surfaces.

Several products are possible depending on the dimensions and the amount of out of flatness to be compensated. More information is available from our technical department.

TRANSPORT HANDLING
Our slewing rings are carefully packed (wrapped) in order to avoid any damage during transport. However during the transport the bearing needs to be protected against the environment. (the wrapping is not suitable to expose the bearing to an outside environment.)
Transport and storage are to be carried out in horizontal position only; transport in other positions requires special methods.
As with any mechanical precision part, the rings must be handled with care avoiding any shocks, particularly along the radial axis.
Handling should be carried out with suitable equipment for the weight of the part.

DELIVERY - STORAGE
The packed (wrapped) rings have a greased/oiled surface allowing limited storage in a covered and temperature controlled area.
A suitable protection must be applied for longer storage. It is necessary to re-grease before taking the bearing in operation.

UNPACKING - PREPARATION
When unwrapping the bearing:
• Take care not to cut the protective seals when removing the packing paper.
• Cut this paper, preferably on the external diameter, and not on the upper or lower faces.
When degreasing the bearing:
• Use a standard commercially available solvent. Chlorine containing solvents are prohibited.
• Take care not to introduce any solvent under the seals or in the raceways.
• Before fitting the grease nipples or junction pipes, remove the caps or screws from the greasing holes.
INSTALLATION

WHEN INSTALLING THE BEARING:

Support Structure
• Make sure that supporting structures comply with specifications
• Check for chips, weld seam particles, corrosion signs or any other dirt etc.
• Check the good matching of the rings on the supports

CENTERING RING
When loads along the radial axis are important, especially when the bearing is placed vertically, it is then mandatory to use the centring ring to fix the bearing in position.

The structural adhesive type LOCTITE 586 provides a good means to limit the relative displacements between slewing bearing and supports.

POSITIONING
The hardening junction which is marked by a red/green line or S point on the geared ring, and located at the filler plug on the other ring, must be placed at 90° to the main load axis or to the arm supporting the load.

FASTENING
• Check that fasteners are of the recommended grade, e.g. marked 10.9 on the head and that threads are properly lubricated.
• For bearings the use of treated hardened flat washers is required as follows:
 • the yield strength is greater than or equal to 600 Mpa,
 • The diameter DR = 2 d,
 • The thickness h > 0.3 d.

The elastic washers type Belleville (also known as a cupped spring washer, is a type of non-flat washer), Grower or others of whatever type or pattern are absolutely prohibited and will void all warranty.

• Install all fasteners and tighten lightly.
• Then tighten to the specified value using a properly calibrated torque wrench; hydraulic devices are advisable.
• The bolts must be carefully preloaded crosswise to the specified values. To ensure a uniform tightening over the whole circle.

The tightening torque to be applied is defined in the following table for bolt grade 10.9 and a screw/nut friction factor of 0.12 according to VDI 2230.
TIGHTENING TORQUE

Clamping Force and Tightening Torque $0.75 \times$ Yield Strength

For Quality 10.9 with Yield Strength 940 N/MM2

Tightening Strength = 743 N/MM2

Tightening method

- < M30: Torque manual/hydraulic
- > M30: Always hydraulic pulling of the bolt/rod end

<table>
<thead>
<tr>
<th>DIAM</th>
<th>SW</th>
<th>BZK</th>
<th>Clamping Force KN</th>
<th>Tightening Torque NM</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12</td>
<td>22</td>
<td>10</td>
<td>56</td>
<td>117</td>
</tr>
<tr>
<td>M14</td>
<td>12</td>
<td></td>
<td>77</td>
<td>184</td>
</tr>
<tr>
<td>M16</td>
<td>27</td>
<td>14</td>
<td>106</td>
<td>279</td>
</tr>
<tr>
<td>M18</td>
<td>14</td>
<td></td>
<td>129</td>
<td>387</td>
</tr>
<tr>
<td>M20</td>
<td>32</td>
<td>17</td>
<td>166</td>
<td>558</td>
</tr>
<tr>
<td>M22</td>
<td>36</td>
<td>17</td>
<td>208</td>
<td>747</td>
</tr>
<tr>
<td>M24</td>
<td>41</td>
<td>19</td>
<td>239</td>
<td>954</td>
</tr>
<tr>
<td>M27</td>
<td>46</td>
<td>19</td>
<td>315</td>
<td>1395</td>
</tr>
<tr>
<td>M30</td>
<td>50</td>
<td>22</td>
<td>385</td>
<td>1890</td>
</tr>
</tbody>
</table>

Crosswise tightening
WHEN INSTALLING THE PINION

Gear

• The pinion should be located approximately at 90° of the major loading axis.
• Adjust the driving pinion to the maximum eccentric point of the ring gear, marked by a blue/red line.
• At this stage, the backlash must be within the limits of the calculated values or minimum at 0.05 x module.

• When several pinions are used, each one must be adjusted to the same conditions.
• During tests, make sure that good alignment of the pinion and of the slewing ring axes permits a satisfactory contact across all the gear width.
• Before running, lubricate the teeth of the slewing ring gear and of the pinion

Tests - inspections

After final tightening of all fasteners:
• Rotate the ring for at least 3 turns.
• Recheck the backlash value on the gear mesh over one full revolution.
• Measure the total clearance under a known load. The checked points should be marked. It is advisable to register these values in a maintenance logbook specific of the machine.

Operating process:
• Place a measuring device between the two rings as close as possible to the raceway on the main load axis: precision grade 0.1 mm minimum.
• Calibrate to zero, under a known load.
• Apply a measured load.
• Read the clearance value at the point considered.
• Repeat this measurement in the previously marked points.
• Take into account the deflection of the support structure and the fasteners elongation corresponding to the instrument position.

AXIAL CLEARANCE MEASUREMENT OF A SLEWING BEARING
MAINTENANCE - LUBRICATION

A suitable lubrication is essential for the longevity of the raceways and gears. The operating conditions such as loads, temperatures, speeds, vibrations, etc... Determine the choice of lubricant.

RACEWAY
Unless otherwise specified, the slewing rings are delivered greased. Standard grease: ESSO BEACON EP 2 or equivalent.

Main properties required for multipurpose grease:
As being a significant component of the bearing, grease will improve the bearing capabilities and lifetime.

Recommendations for bearing lubricant:
• Lithium-base soap.
• Minimum viscosity of the base: 150 mm²/sec.
• Grade NLGI 2.
• Anti-wear and extreme pressure additives.
• Service temperature: – 30° C to + 120° C
• 4 ball test: weld load: ASTM D 2596 (NT24) > 300
• Maximum NDM: for balls = 60 000 for rollers = 30 000

GEAR
Greased or oiled surface protection against oxidation is applied.

GREASING HOLES
Radial or facially located, depending on design, these holes are generally tapped M10 x pitch 1.00 and closed by caps or screws. Remove these plugs before fitting the slewing ring with grease nipples or linked to a centralized lubrication system.
Caution:
The filler plug for the rolling elements has a blind tapped hole which is not a greasing hole.

REGREASING METHODS
Whenever the application allows it, greasing must be carried out during rotation at slow speed, on two revolutions minimum, through all the greasing holes.

GREASING FREQUENCY
Raceway and gear.
The greasing frequency varies according to utilization and environment. We recommend re-greasing every 150 hours in normal usage. This frequency is to be reduced to 50 hours when the conditions of application are severe or if the environment is dusty or wet. Greasing is required, before and after a long idle period. Re-grease every 6 months, while rotating, during prolonged idle periods.
GREASE QUANTITY
Raceway:
The grease quantity is defined by the Engineering Department whenever a detailed bearing calculation is provided.
Approximate practical formula to determine the minimum necessary quantity "Q" in cm³:
\[Q = \frac{0.005}{3} \times D \times H \]
with:
D = raceway mean Ø of the bearing in mm.
H = overall height of the ring in mm.
In all cases, a light extrusion of new grease must appear at the protection seal lips.

Gear:
The grease must entirely cover the flanks of the pinion and of the ring gear whether applying by brush or spraying.

GREASE TABLE
According to our experience, the greases mentioned in the below table are compatible with each other and with the components of the bearings.
It is possible to use other lubricants provided that you are sure of their compatibility with the standard recommendation beforehand.
Greases containing molybdenum disulphide MoS₂ are strictly forbidden!

<table>
<thead>
<tr>
<th>Bearing</th>
<th>Grease Make</th>
<th>Gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energrease LS - EP2</td>
<td>BP</td>
<td>Energrease LC 2</td>
</tr>
<tr>
<td>Mobilux EP2</td>
<td>Mobil</td>
<td>Mobilgear OGL 461</td>
</tr>
<tr>
<td>Alvania EPLF2</td>
<td>SHELL</td>
<td>Malleus OGH</td>
</tr>
<tr>
<td>Rhus L 474/2</td>
<td>MOTUL/BECHEM</td>
<td>Berulit GA 400</td>
</tr>
<tr>
<td>BEACON EP 2</td>
<td>ESSO</td>
<td>Multi-Purpose Grease (Moly)</td>
</tr>
<tr>
<td>Multis EP2 - Lical EP2</td>
<td>TOTAL FINA ELF</td>
<td>Ceran AD</td>
</tr>
<tr>
<td>Epexa 2 / Epexelf 2</td>
<td>ELF</td>
<td>Cardrexa DC1</td>
</tr>
<tr>
<td>Spheerol EPL 2</td>
<td>CASTROL</td>
<td>Castrol LMX</td>
</tr>
<tr>
<td>Aralub HLP2</td>
<td>ARAL</td>
<td>Aralub MKA-Z 1</td>
</tr>
</tbody>
</table>

Subject to change in accordance with the manufacturer recommendations and product development
PREVENTIVE MAINTENANCE

PROTECTION SURVEY
A visual examination makes it possible to ensure the integrity of the protective seals:
• Absence of excessive stretch or rips,
• correct positioning,
• wear of the friction lip.
If necessary, replace the seal.
After re-greasing, wipe clean residue of old grease and check for pollutants such as sand, coal, metallic particles, etc.

FASTENER SURVEY
It is particularly important to check that the required preload level of the bolts is still maintained as the fasteners of the slewing rings are essentially working in fatigue.

We recommend retightening the fasteners after the first two to four months of utilization and then proceeding to a systematic yearly check.
If any bolt is found loose, a further in deep examination is essential. The necessary preservative measures must then be exercised. Some regulations impose the replacement of fasteners every 5 years or every 10 000 working hours.
In any case, refer to local rules and regulations enforced in connection with the application.

ORIENTATION SURVEY
During cleaning prior to re-greasing of the gear:
• Check carefully for any foreign body at the tooth root, ring and pinion.
• Check the even load distribution of the pinion on the entire width of the ring gear and correct the alignment of the axes if needed.
• Check the backlash value.
CHECKING THE CLEARANCE UNDER LOAD

we deliver its bearings with a preload ensuring proper functioning and optimum safety. During the product life, the preload decreases resulting in a noticeable increase of clearance under load. The bearing must be replaced when the clearance becomes incompatible with the proper functioning of the machine and with the required safety conditions for the type of material used.

ROTATION SURVEY

To quantify the wear factor, it is necessary to know the clearance under load.
• In new condition: J0
• At time of survey: J1

These measurements are made under the same initial conditions after having checked the tightening of fasteners it is most advisable to register the measured values in the maintenance logbook specific of the machine.

Wear is the difference: \(u = J1 - J0 \).
• The bearing must be placed under survey when: \(u \geq J0 \).
• Its replacement must be considered when: \(u \geq 1.5 \times J0 \). And it is required when: \(u \geq 2 \times J0 \).

In any case, refer to laws and regulations applicable in the country where your equipment will be used.

General Note:

This document is only giving general technical information regarding the application of slewing bearings. The equipment designer remains responsible for determining the right bearing for his application. Upon request we can give assisantance in determining the correct service factor and calculate the suitable bearing for your application. We do not accept any liability without being consultant and having explicit added our approval.